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Abstract — All-pass network techniques have made it possible to realize
very small monolithic lnmped active phase shifters with decade bandwidths,
high yield, and relative phase stability, even when the device parameters
vary +20 percent. We have successfully demonstrated fully monolithic
first-order networks (at 250 MHz) and second-order networks (at 4 GHz).

I. INTRODUCTION

ICROWAVE phased-array systems traditionally
have been designed with a binary set of phase
shifters using distributed components. Unfortunately,
applying those techniques to monolithic integrated circuits
results in comparatively large chip size for frequencies
below about 6 GHz. This problem has caused a strong

interest in using lumped circuit techniques that enable chip

size to be reduced drastically. Yet lumped phase shifters
that depend on precise absolute values of device parame-
ters often have low yield. This paper reports on a mono-
lithic phase shifter implementation consisting of a pair of
segmented modulators [1], {2] driven by pairs of signals
derived from constant-phase-difference networks.

These constant-phase-difference networks are a mono-
lithic version of a circuit first proposed by R. B. Dome in
1946 for generating single sideband modulation with audio
frequencies [3]. The circuit consists of pairs of all-pass
networks with only capacitors, resistors, and active ele-
ments. The poles and zeros of the transmission function lie
on the real axis of the complex frequency plane, and the
number of such pole and zero pairs determines the relative
bandwidth over which the network will function with a
small phase error. A first-order network with a single
pole-zero pair is useful for narrow-band applications,
while a second-order network can maintain a constant
phase difference of 90° over a relative bandwidth of as
much as 10 to 1, depending on the allowable errors in
phase tracking.

An interesting property of the circuit is that the phase
differences between the multiple outputs are primarily
dependent on the ratio of resistor or capacitor values. This
characteristic is ideal for monolithic technology, where the
ratio of parameters is accurately determined by topological
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mask design, while the absolute values are a function of
doping levels and deposition rates.

In addition, the magnitude of the needed capacitance
decreases with increasing frequency. To implement the
all-pass networks at 5 GHz, for example, capacitance
values well under 1 pF are needed. In fact, only in a
monolithic circuit are the unavoidable stray capacitances
sufficiently small in comparison to make the circuit feasi-
ble.

The following sections of this paper report the design,
fabrication, and evaluation of a first-order network in-
tended for the 220-280-MHz frequency range and a sec-
ond-order implementation for the 3-5-GHz range. Both
networks were designed to generate four output signals
having relative phases of 0°, 90°, 180°, and 270°. Digitally
controlled on-chip RF switches allow the selection of four
pairs of output signals, i.e., 0° and 90°; 90° and 180°;
180° and 270°; 270° and 0°. When either of the resulting
vector generators is cascaded with the previously reported
sine /cosine scalar element [1], [2], the result is a complete
0°-360° 5-bit phase shifter.

II. THEORETICAL CONSIDERATIONS

The four resistors and four capacitors shown within the
outlined region in Fig. 1 constitute a basic first-order
all-pass network, in which the relative RC time constants
are designed in a manner to generate the required four
signals which are 90° apart from one another in phase. The
four signals are switched to the two output ports with
digitally controlled GaAs FET RF switches. The all-pass
network must be driven by two balanced, complementary
RF signal sources of relatively low impedance. GaAs FET
source followers are used to provide the low-impedance
sources. The symmetry of the configuration ensures that
these input source followers are loaded by equal imped-
ances. The frequency dependence of this finite load imped-
ance will result in a slightly frequency dependent ampli-
tude response in all four output channels equally without
affecting the relative phase and amplitude relationships
among the channels.

The mode of operation for this type of network can be
explained with the help of the voltage vector diagram of
Fig. 2. The amplitude of the output vector is independent
of frequency. When the two networks are designed prop-
erly, one network has a phase shift of 45° and the other a
shift of 135° at the center of the operating frequency band.
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Fig. 1.

Fig. 2. Voltage vector diagram of a pair of all-pass networks.

A circuit configuration using a first-order network shows
a phase response with a single peak. By selecting the
element values so that the phase difference between the
two branches exceeds the desired value of 90° by a small
amount at the center, the circuit will operate over a certain

band of frequencies without the phase error exceeding this
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Circuit schematic of the 250-MHz vector generator.

amount. For example, for a 1° error at the center, the
circuit will cover a 1.7 bandwidth ratio.

A second-order network can be created by cascading
two first-order networks or by replacing the network shown
in Fig. 1 with the one shown in Fig. 3. The resistor and
capacitor network within the outlined region in Fig. 3
constitutes the second-order all-pass network. One disad-
vantage of the single-stage second-order network in com-
parison to a cascade of two first-order networks is its
greater insertion loss. On the other hand, its apparent
greater complexity is of little concern in a monolithic
realization, since the small resistors and capacitors con-
sume very little room on the substrate.

The theory for computing the location of the poles and
zeros of the transfer function has been described in previ-
ous papers [3]-[5]. D. Weaver, in particular, shows a
systematic numerical approach for deriving their locations
[5]. For applications in which second-order networks satisfy
the bandwidth requirements, simpler, more direct iterative
computer programs can be used, since a second-order
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Fig. 4. Phase splitter.

- network has only two independent numerical values that
must be selected. These independent values are, first, the
ratio between the pole locations of both networks and,

second, the ratio of the center frequenc1es of the two
networks.

i

The phase splitter that generates the two out-of-phase
signals, shown in Fig. 4, consists of an initial approximate
phase splitter followed by differential pairs that have more

THE PHASE SPLITTER
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Fig. 3. Circuit schematic of the second:order vector generator (3—5 GHz).

gain for the odd mode than for the even mode. Since the
even-mode component represents the deviation from a
perfect split, the quality of the signal improves with each
stage of ‘differential gain. The initial split load resistor
phase splitter gives a less than perfect split as a result of

~ the presence of a finite gate current. However, the capaci-

tive component of this gate current is partially com-
pensated for by the small capacitor shunting the source
load resistance. :

IV. CIRCUIT IMPLEMENTATIONS

Fig. 5 presents a photograph of the VG-2 cell, which is
an implementation of the first-order circuit shown in Fig.
1. It was designed for operation at a center frequency of
250 MHz. The cell was fabricated using an epitaxial GaAs
process with air-bridge crossovers, metal-insulator—metal
(MIM) capacitors, bulk GaAs resistors, and 1-um-gate-
léngth MESFET active devices. The: chip ‘size is 1.2X
1.2 mm. F1g 6 shows the RF performance over the 180—
340-MHz band, measured at wafer level on a coplanar RF
probe station. -
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Photograph of a vector generator at 250 MHz.
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Fig. 6. RF performance of the 250-MHz vector generator.

Fig. 7 shows a VG-3 second-order constant-phase-dif-
ference network, which is shown schematically in Fig. 3. It
is combined on the same chip with a PSP-1 phase splitter,
shown in Fig. 4. The composite device was fabricated with
a selectively ion implanted process with air-bridge cross-
overs, MIM capacitors, thin-film resistors, and 1-um-gate-
length MESFET active devices. The chip size is 1.2X2.4
mm. Fig. 8 presents the experimental results of wafer-level

Fig. 7. Phase splitter and vector generator (3—5 GHz).
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Fig. 9. Composite resuits of both cells over 3—5 GHz.

-

RF testing for only the phase splitter portion of the circuit
(the left half of Fig. 7). The phase splitter demonstrated
excellent performance over the 200-MHz-to-5-GHz
frequericy range: +0.25 dB amplitude match between the
two outputs  and the phase difference within 1.2° of the
ideal 180°. Fig. 9 shows the composite response of both
cells of Fig. 7 over the 3—5-GHz range.

V. CONCLUSIONS

" Monolithic circuits based on RC all-pass networks are a

viable means of implementing signal generators with con- . |
stant-phase-difference outputs. Such signal generators can -

be fabricated using a very small chip area even at lower
microwave frequencies, and they can be used to create
monolithic active phase shifters by combining them with
modulators. The balanced signals needed to drive the
baldanced all-pass networks can be monolithically imple-
mented using a differential amplifier technique.
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